Discrete Mathematics: Combinatorics and Graph Theory

Practice Exam 2

Instructions. Solve any 5 questions and state which 5 you would like graded. Note that this is a sample exam, and while it bears some similarity to the real exam, the two are not isomorphic.

1. Consider the following:
(a) Define a relation R on \mathbb{Z} by $(a, b) \in R$ if $a^{2}-b^{2} \leq 3$. Verify whether R is (i) reflexive (ii) symmetric and (iii) transitive?
(b) Let $A=\{1,2,3,4,5\}$ and

$$
R=\{(1,1),(1,3),(1,4),(2,2),(2,5),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4),(5,2),(5,5)\}
$$

Which of the following is an equivalence class?
(i) $\{1,2,3\}$
(ii) $\{2,3,5\}$
(iii) $\{1,3,4\}$
(iv) $\{1,2\}$
(v) $\{1,2,3,4,5\}$
(c) If R_{1} and R_{2} are equivalence relations on the set A, then $R_{1} \cap R_{2}$ is an equivalence relation on A. Prove or disprove.
2. Solve the following:
(a) $3 x \equiv 7(\bmod 4)$
(b) $6 x \equiv 7(\bmod 8)$
(c) $8 x \equiv 13(\bmod 29)$
3. Find the smallest positive integer x such that:

$$
\begin{aligned}
& x \equiv 1(\bmod 3) \\
& x \equiv 2(\bmod 4) \\
& x \equiv 3(\bmod 5)
\end{aligned}
$$

4. Evaluate the following expressions or verify the identities:
(a) $(a+b)^{7}$
(b) $\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}$
(c) $\binom{n}{k}=\binom{n}{n-k}$
(d) $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$
(e) $\sum_{i=1}^{n} i\binom{n}{i}=n 2^{n-1}$
5. Let $\operatorname{gcd}(a, b)=1$. Show that $a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod a b)$.
6. Let p be a prime. Show that $\binom{p}{i} \equiv 0(\bmod p)$.
