DISCRETE MATHEMATICS: COMBINATORICS AND GRAPH THEORY

Practice Exam 2

Instructions. Solve any 5 questions and state which 5 you would like graded. Note that this is a sample exam, and while it bears some similarity to the real exam, the two are not isomorphic.

- 1. Consider the following:
 - (a) Define a relation R on \mathbb{Z} by $(a,b) \in R$ if $a^2 b^2 \leq 3$. Verify whether R is (i) reflexive (ii) symmetric and (iii) transitive?
 - (b) Let $A = \{1, 2, 3, 4, 5\}$ and

 $R = \{(1,1), (1,3), (1,4), (2,2), (2,5), (3,1), (3,3), (3,4), (4,1), (4,3), (4,4), (5,2), (5,5)\}.$

Which of the following is an equivalence class?

- $(i) \quad \{1,2,3\} \qquad (ii) \quad \{2,3,5\} \qquad (iii) \quad \{1,3,4\} \qquad (iv) \quad \{1,2\} \qquad (v) \quad \{1,2,3,4,5\}$
- (c) If R_1 and R_2 are equivalence relations on the set A, then $R_1 \cap R_2$ is an equivalence relation on A. Prove or disprove.
- 2. Solve the following:
 - (a) $3x \equiv 7 \pmod{4}$
 - (b) $6x \equiv 7 \pmod{8}$
 - (c) $8x \equiv 13 \pmod{29}$
- 3. Find the smallest positive integer x such that:

$$x \equiv 1 \pmod{3}$$
$$x \equiv 2 \pmod{4}$$
$$x \equiv 3 \pmod{5}$$

- 4. Evaluate the following expressions or verify the identities:
 - (a) $(a+b)^{7}$ (b) $\sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{n-k}$ (c) ${n \choose k} = {n \choose n-k}$ (d) $\sum_{k=0}^{n} {n \choose k} = 2^{n}$ (e) $\sum_{i=1}^{n} i{n \choose i} = n2^{n-1}$
- 5. Let gcd(a,b) = 1. Show that $a^{\phi(b)} + b^{\phi(a)} \equiv 1 \pmod{ab}$.
- 6. Let p be a prime. Show that $\binom{p}{i} \equiv 0 \pmod{p}$.